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Electrifying transportation in the form of the large-scale develop-
ment of electric vehicles (EVs) plays a pivotal role in reducing ur-
ban atmospheric pollution and alleviating fossil fuel dependence.
However, the rising scale of EV deployment is exposing problems
that were previously hidden in small-scale EV applications, and the
lack of large-scale EV operating data deters relevant explorations.
Here, we report several issues related to the battery utilization
and energy consumption of urban-scale EVs by connecting three
unique datasets of real-world operating states of over 3 million
Chinese EVs, operational data, and vehicle feature data. Mean-
while, by incorporating climatic data and EV data outside China,
we extend our models to several metropolitan areas worldwide.
We find that blindly increasing the battery energy of urban EVs
could be detrimental to sustainable development. The impact of
changes in the energy consumption of EVs would be exacerbated
in large-scale EV utilization, especially during seasonal shifts. For
instance, even with a constant monthly driving demand, the aver-
age energy consumption of Beijing light-duty EVs would change
by up to 21% during winter–spring shifts. Our results may also
prove useful for research on battery resources, urban power sup-
ply, environmental impacts, and policymaking.

transport electrification | battery resource | energy consumption | electric
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Large-scale electrification of transport is considered an effec-
tive solution to decrease the use of petroleum-derived fuels

and mitigate the urban accumulation of air pollutants. The
global stock of light-duty electric vehicles (LDEVs) exceeded 7.2
million in 2019 (1, 2), and China accounted for the largest share
at ∼47%, followed by Europe and the United States. To further
boost the electric vehicle (EV) market, numerous jurisdictions
have introduced incentives or adopted action plans: China has
prolonged subsidies for EVs to 2022 (3); the European Union
has provided new tax schemes for electric cars (4); and several
regions in the United States and Canada, such as California and
Quebec, respectively, have enacted incentives for zero-emission
vehicle programs (5, 6). The International Energy Agency indi-
cated that the global EV stock would need to increase to 140
million by 2030 (2) to achieve the goals of existing government
policies [the Stated Policies Scenario (7)]. In this context, from
2019 to 2030, the global battery capacity production and elec-
tricity demand from EVs would soar ninefold to 1.5 TWh · y−1

and sixfold to 550 TWh · y−1, respectively (2, 8). Accordingly, the
global demand for the critical metals used in EV batteries, in-
cluding cobalt, lithium, manganese, and nickel, would increase by
8 to 14 times from 2019 to 2030 (2, 9).
The surging demand for battery resources and energy from

EVs signifies a need to reassess the real-world battery utilization
and energy consumption of urban-scale EVs. Research topics on
this front have focused on analyzing the supply risks of battery
resources (10–12), battery recycling (13–15), sustainability (16–18),
charging planning (19–21), and the impact on urban power grids

(22–24). A common and indispensable input of these studies is
accurate battery utilization or energy consumption of urban EVs.
Meanwhile, since the environmental gains of EVs can only be
measured from electricity production processes, the energy con-
sumption of urban EVs is also an important basis for research on
emissions (25–28), air pollution (29, 30), and health benefits (31,
32). However, owing to the absence of urban-scale EV operating
data, most existing assessments are conducted by relying on mac-
roscopic evaluations or the simulations that are calibrated with
aggregate-level parameters (33–35). When applied to large-scale
EV applications, these simplifications can lead to nonnegligible
biases in the results (36) as they cannot reflect the complexity of
driving trajectories and varying battery performance in EV oper-
ation. On the other hand, in small-scale EV samples, the overall
levels of battery utilization and energy consumption tend to be
altered by the special use behavior of individual users. This phe-
nomenon conceals some trends that would otherwise have been
evident, such as low battery utilization and seasonal changes in the
energy consumption of EVs.
In 2016, the National Monitoring and Management Center for

New Energy Vehicles was established in China, which serves as
the national big data platform for EVs. The center has the only
datasets in the world that contain real-time operating data of
nationwide EVs (the number of EVs in the datasets exceeded 3
million in 2020). For the EVs in some metropolitan areas in
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China, such as Beijing and Shanghai, the coverage of the plat-
form can reach up to 80%. The data content primarily includes
two parts: dynamic vehicular data (general vehicle status, sub-
system operating data, and location data) and static information
(metadata and attributes). The temporal and spatial resolutions of
the dynamic vehicular data are 1 to 30 s and 1 to 10 m, respec-
tively. This large-scale and high-precision data source of Chinese
EVs, coupled with EV datasets outside China, provides unique
data support for achieving the large-scale assessments in this work
(see Materials and Methods).
Here, we present a fact-based assessment of battery utilization

and energy consumption in urban-scale EV applications to ex-
pose several issues affecting battery resources and the urban
power supply. To this end, we combine four types of data: 1) EV
operating data, 2) EV operational data describing the fleet types
and license plate regions, 3) vehicle feature data providing the
specifications of EVs, and 4) climate data providing ambient
temperatures in different urban areas (see Materials and Meth-
ods). To understand the impact of regional variability, nine met-
ropolitan areas worldwide with large EV markets (37) are selected
in this work. Accordingly, we first analyze the changes in battery
utilization that are affected by user behavior or limited by current
battery technology. We investigate how different fleet types and
climatic conditions can affect the battery utilization of urban EVs.
We also display the developing trends of battery utilization in
urban-scale EV groups under different directions of battery
technology improvement. Then, we assess the energy consumption
of urban EVs from different perspectives. We observe that in
some continental climate regions, the energy consumption of EVs
fluctuates greatly in different months because of temperature
shifts. These fluctuations and step changes are unfavorable as they
can greatly amplify the original daily energy demand of EVs, es-
pecially in urban-scale EVs. We show the extent to which this
problem can be addressed as EV technology improves. The results
demonstrate how often-ignored changes in the battery utilization
and energy consumption of urban EVs could affect the resource
efficiency of EV batteries and urban power supply.

Results and Discussion
Battery Utilization. In this section, we quantify changes in the
battery utilization rates—the percentage of battery energy
usage—of urban EVs. The analysis framework is shown in Fig. 1.
By associating EV battery states with operational data, we ob-
serve two cases of battery utilization changes in large-scale EV
groups. The first is caused by the imbalance between users’ travel
demand and the available driving ranges provided by EV bat-
teries and is referred to as the behavior-related battery utilization
change (38, 39). The other case is induced by the degradation in
battery performance that lowers the upper limits of battery utili-
zation rates (40–42). This case is defined as the technology-related
battery utilization change as the degradation stems from the in-
sufficiency of current battery technology. Both behavior- and
technology-related changes in battery utilization can result in a
waste of battery materials and an increase in costs.
Behavior-related battery utilization changes. To understand the dy-
namic pattern of behavior-related battery utilization in urban-scale
EV groups, we first model the driving distance distributions of
LDEVs at varied time scales, fleet types, and operating regions
using high-resolution driving data (see Materials and Methods).
Then, we estimate the battery utilization rates of different fleet
types as a function of travel demand of the different proportions of
urban LDEVs (seeMaterials and Methods). The fleet types studied
in this work include two categories: public LDEVs (electric taxis
and rental LDEVs) and private LDEVs. Owing to the better op-
erational data support for EVs in China, three metropolitan areas
in China with large EV markets (43) are selected in this part.
In Fig. 2A, public and private fleet types show different daily

driving distance distributions, whereas the three metropolitan

areas are relatively similar. In these three regions, the daily driving
distance distributions of private and public LDEVs are concen-
trated in the ranges of 10 to 100 km and 110 to 280 km, respec-
tively. Currently, the range of the most easily available LDEVs
on the market is ∼300 km (44). To meet the daily travel demand
of 80% of the LDEVs in Beijing, Shanghai, and Guangzhou,
the battery utilization rates of 300 km LDEVs range from 27 to
59% when used as private LDEVs and from 80 to 98% when
used as public LDEVs (SI Appendix, Fig. S1). The data in refs.
45 and 46 also suggest that the driving distance distributions
are similar in some regions in the United States and European
nations, including Germany, Sweden, Seattle, and Atlanta.
In the last 2 y, EV manufacturers have tended to launch EVs

with ranges exceeding 600 km (47). However, the battery utili-
zation rates of 600 km private LDEVs are lower than 29% when
needed to meet 80% of the daily travel demand in Beijing,
Shanghai, and Guangzhou (SI Appendix, Fig. S1). These low
battery utilization rates in urban-scale EVs would keep most
battery materials in standby states (higher than 71%). This scale
of underutilization is extremely negative for the resource effi-
ciency of EV batteries and economic costs. Nevertheless, the
decrease in behavior-related battery utilization can be avoided in
some cases. For EVs with specific applications, such as taxis and
buses, the main parts of their daily driving distances are normally
distributed (see the distributions of public vehicles in Fig. 2A). In
this case, battery energy can be customized to match the daily
travel demand, and this approach is positive for battery resources
and costs. By contrast, the daily driving distances of urban pri-
vate EVs exhibit positively skewed distributions. Hence, there is
a certain percentage of users with large daily driving distances.
The dispersive behavior of private EVs makes the space for
optimization relatively small (48).
Technology-related battery utilization changes. We look at the de-
creased upper limits of battery utilization rates caused by insuf-
ficient battery technology. Nine metropolitan areas worldwide
are targeted in this part. We first use statistical models to analyze
the upper limits of battery utilization rates of EVs in different
spatiotemporal conditions (see Materials and Methods). Next, we
estimate the average and lowest upper limits of the battery uti-
lization rates of EVs in varied metropolitan areas (see Fig. 2B for
LDEVs and SI Appendix, Fig. S2 for electric buses). The analysis
that is carried out on data collected on a monthly basis is utilized
to assess the impact of seasonal shifts (Fig. 2C and SI Appendix,
Fig. S3 A–I). Interestingly, we find that several regions with
oceanic climate characteristics, such as Los Angeles and London,
may have relatively high upper limits of battery utilization rates
(greater than 84%; see the lowest battery utilization rates in
Fig. 2B and ambient temperatures in SI Appendix, Fig. S4 A–I).
By contrast, in several continental climate regions, such as Beijing
and New York, their low winter temperatures lower the upper
limits of battery utilization rates by up to 35 to 43%.
We then use highly resolved EV data to investigate how sea-

sonal changes could affect users’ actual behavior with respect to
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Fig. 1. Assessment framework for battery utilization. First, urban driving
statistics and battery operation limitations are calculated by using urban-
scale EV mobility, climatic data, operational information, and vehicle fea-
tures. Second, the battery utilization model uses urban driving statistics and
limitations to determine the average and upper limits of battery utilization
of EVs in different regions. Third, simulations of battery improvement are
incorporated into the analysis to estimate the development trends.

2 of 8 | PNAS Zhao et al.
https://doi.org/10.1073/pnas.2017318118 Assessment of battery utilization and energy consumption in the large-scale development

of urban electric vehicles

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
30

, 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2017318118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2017318118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2017318118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2017318118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2017318118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2017318118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2017318118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2017318118/-/DCSupplemental
https://doi.org/10.1073/pnas.2017318118


www.manaraa.com

EV batteries. In SI Appendix, Fig. S5, it can be seen that the
average state of charge (SOC) of LDEVs starts to decrease in
the 6:00 to 8:00 morning period and reaches a minimum at
∼22:00 to 23:30 (subsequent charging would increase the SOC).
Interestingly, we find that in some regions, more battery capacity
is needed to meet the driving demand of EVs in winter. From the
SOC distributions in SI Appendix, Fig. S5 A–L, it can be observed
that for the targeted Beijing LDEV group, low SOC values occur
more frequently during the winter months. SI Appendix, Fig. S6
shows that for the Beijing LDEV group, the daily average SOC
ranges from 69 to 71% in winter and from 71 to 76% in other
seasons, while the daily average SOC of Guangzhou LDEVs
ranges from 67 to 70%, reaching the lowest value in summer.
These trends and the months when the extreme values occur are
similar to the changes in the upper limits of battery utilization
rates (Fig. 2C and SI Appendix, Fig. S6). Based on these, we may
infer that seasonal changes have already been affecting the battery
usage and charging behavior of large-scale EV applications (changes
in energy demand are discussed in a later section).
We evaluate the impact of decreased upper limits of battery

utilization rates on the waste of battery materials and increased
economic costs, considering different levels of battery improve-
ment. To this end, we calculate the largest portion of unavailable

battery energy that is caused by the degradation in battery per-
formance, namely, the maximum unavailable battery energy. We
perform linear simulations of three aspects of battery improve-
ment that can reduce the impact on battery performance deg-
radation: reducing aging effects (49), improving performance at
high and low temperatures (50, 51), and increasing battery en-
ergy densities (52). For the first two aspects, we define a devel-
opment level of 0% to represent the current level and a level of
100% to indicate that this aspect will have no restrictions on
battery utilization (see Materials and Methods). Regarding the
battery energy density, we simulate the varied battery energy
densities of current EVs. As shown in Fig. 2D, the maximum
unavailable battery energy of Beijing LDEVs with 70 kWh bat-
teries can reach 33.6 kWh. In this case, if the restrictions induced
by extreme ambient temperatures or battery aging are reduced
by 80%, the unavailable battery energy can be curtailed by up to
15.7 kWh or 7.3 kWh, respectively. The equivalent economic
benefits realized by optimizing battery packs reach $2,826 or
$1,314, respectively (see cost calculation in Materials and Meth-
ods). Further results for LDEVs in more regions are displayed in
SI Appendix, Fig. S7 A–I. It can be seen that although the impact
of climatic conditions varies in different regions, LDEVs with

A B

C D

Fig. 2. Assessing battery utilization. (A) Daily driving distance distributions in six categories (threemetropolitan areas: Beijing, Shanghai, and Guangzhou; and two
fleet types: public and private LDEVs). (B) Annual average and lowest upper limits of battery utilization rates, Rt, of LDEVs in nine regions. The bars marked in red
indicate that the lowest value occurs in summer. (C) Monthly average upper limits of battery utilization rates of LDEVs in nine regions. Four line styles represent four
patterns of the changes in average Rt: only decrease in summer (GZ) or winter (LON, PAR, and BER), decrease in both summer and winter (TYO, SH, NYC, and BJ),
and almost no decrease (LA). (D) Maximum unavailable battery energy,Qm, and equivalent battery costs of LDEVs in Beijing with varied battery energy (70 kWh and
100 kWh) under individual or combined (T. & A.) battery improvement of improving extreme temperature performance (T.) and reducing aging effects (A.).
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higher battery energy will always suffer higher maximum unavail-
able battery energy.
Moreover, since the battery materials needed to manufacture an

electric bus are substantially more than an LDEV, ensuring high
battery utilization rates of electric buses is more significant for
battery material sustainability. To save the costs of procuring elec-
tric buses, bus operators tend to order electric buses whose battery
sizes are reduced as much as possible under the premise of meeting
a basic daily travel demand. As electric buses generally have fixed
application scenarios (routes and schedules), it is significant for
them to reduce the portion of battery energy that can become un-
available when batteries are under high and low ambient temper-
atures or aging. SI Appendix, Fig. S8A shows that the maximum
unavailable battery energy of electric buses with 150 kWh battery
packs in Beijing can reach 65.2 kWh, and the equivalent cost can
reach $9,128. We show the results for electric buses in more regions
in SI Appendix, Fig. S8 B–I. Overall, we conclude that there are
certain differences in battery utilization for different operating re-
gions, fleet types, and battery technology levels. However, in any
case, if the battery energy of EVs is unnecessarily increased, more
battery materials would be underutilized (results with varied battery
energy are compared in Fig. 2D and SI Appendix, Figs. S7 and S8).

Energy Consumption. Our goal in this section is to assess changes
in the energy consumption of urban EVs by examining different
operating regions, time scales, fleet types, and group scales. The
assessment framework is displayed in Fig. 3. First, we investigate
the energy consumption rates (ECRs)—energy consumption per
kilometer—of EVs in different spatiotemporal conditions (see
Materials and Methods). Next, we use the ratio and relative in-
crease of the actual and average lowest ECRs to compare the
average levels of the ECRs of EVs across nine metropolitan
areas. Fig. 4A depicts the annual average and highest ratios of
LDEV ECRs in nine metropolitan areas. The annual average
ECRs of LDEVs in Beijing and New York City are 6.5 to 8.5%
higher than the lowest ECRs, and the highest ECRs can increase
by 68.3%. By contrast, the temperature conditions of Los Angeles
and Guangzhou are more conducive to EV battery operation. In
these two regions, the annual average and highest ECR increases
for LDEVs are less than 4.6 and 24.2%, respectively. The regional
differences in the relative increases of ECRs for electric buses
exhibit a similar pattern to those of LDEVs (SI Appendix, Fig. S9).
Note that the highest ECRs of LDEVs in Guangzhou occur in
summer (marked in red in Fig. 4A), while those in the other eight
regions occur in winter.
To understand why the highest ECRs of LDEVs occur in

different seasons, Fig. 4B contrasts the monthly average energy
consumption of power and auxiliary systems of LDEVs in two
representative regions: Beijing (temperate continental climate)
and Guangzhou (subtropical climate). For the LDEVs in Beijing,
the low winter temperature (average below 0 °C) not only de-
creases the battery performance but also increases the energy
consumption of auxiliary systems [more electricity for cabin heating

(53)]. This combined effect produces the highest ECRs of Beijing
LDEVs in winter. On the other hand, the average winter temper-
ature in Guangzhou is relatively high (average above 15 °C), which
would not explicitly curtail EV battery performance (51). How-
ever, the average ECRs of Guangzhou LDEV auxiliary systems in
summer are almost double those in spring [hot weather leads to
higher energy consumption of air conditioners (53, 54)], which
makes their overall ECRs peak in summer.
From a monthly perspective, we analyze the impact of oper-

ating regions and group scales on the monthly energy consumption
of urban EVs. We first estimate the monthly average ECRs of
LDEVs in nine regions (SI Appendix, Fig. S10) and monthly driving
distance distributions in three regions (see Fig. 6 A, Inset). Ac-
cordingly, we investigate the average impact of the scale increase of
urban EVs on the urban monthly power supply. SI Appendix, Table
S1 illustrates that in Beijing, an increase of 2 million private
LDEVs, 0.4 million public LDEVs, or 0.13 million electric buses
(10 m in length) would increase the urban monthly power supply by
∼10%. On the other hand, we observe that in some regions, even
with a constant monthly driving demand, there are still significant
changes in the energy consumption of urban EVs during winter–
spring and autumn–winter seasonal shifts (e.g., up to 21% in
Beijing and 13% in New York City; see SI Appendix, Fig. S11 A–I).
This is primarily induced by the evident changes in ECRs caused by
rapid regional temperature changes (53). For example, in Beijing,
the average ECR of LDEVs fluctuates greatly throughout the year,
rising by 26.7% in January and plummeting to the lowest ECR in
May (Fig. 4C). By contrast, in Los Angeles, where the ambient
temperature is highly even, the changes in the average ECR of
LDEVs are fairly stable, varying less than 5% throughout the year
(SI Appendix, Figs. S4 A–I and S11E). These results highlight the
strong regional characteristics of EV monthly energy consump-
tion. Moreover, we analyze how the scale increase of urban EVs
affects the energy demand changes during seasonal shifts (SI
Appendix, Fig. S12 A–C). Fig. 4D shows the maximum increase
and decrease in monthly energy consumption of the public
LDEVs versus the group scale in the different regions. The curves
indicate that significant changes would be exacerbated as electri-
fied transportation rapidly develops. The results in SI Appendix,
Fig. S13 suggest that these changes can be attenuated when the
high and low temperature performance of EVs is improved (54).
We then explore how seasonal changes could affect the real-

world charging behavior and charging loads of urban LDEVs.
Fig. 5 shows the minute-level changes in the number of active
EVs (charging and driving) in an EV group for different seasons
(the maximum value is standardized as 1,000 EVs for compari-
son). It can be seen that the maximum number of LDEVs in
driving and charging states, respectively, takes place in the 9:00
to 11:00 morning period and 23:00 to 1:00 midnight period. The
average ratio (Rdc) between the number of charging LDEVs and
the number of driving LDEVs is calculated to compare the in-
tensity of charging activities for different months. As shown in SI
Appendix, Fig. S14 A–L, for Beijing LDEVs, the values of Rdc in
January and July are 0.25 and 0.23, respectively, evidently higher
than those in other months (0.1 to 0.22); the values of Rdc for
Guangzhou LDEVs, however, are less variable, ranging from
0.23 to 0.25. SI Appendix, Fig. S15 presents the charging loads of
LDEVs in a day for different months. It can be observed that the
daily average charging load of LDEVs in Beijing peaks in Jan-
uary and that of LDEVs in Guangzhou peaks in July. By com-
bining the results of active LDEV numbers and the charging
loads, we find that there are more cases of recharging for Beijing
EVs in the afternoon in winter, which leads to a higher power
demand during this period (Fig. 5D and SI Appendix, Figs. S14
and S15). Note that although seasonal changes in some regions
may affect the power supply of EVs, there is no evidence that it
determines when power peaks occur. More imperative factors,
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Fig. 3. Assessment framework for energy consumption. First, the energy
consumption model uses real-world EV data to measure the ECRs of large-
scale urban EVs in varied circumstances. Second, the detailed EV model uses
these results to calculate subsystem energy consumption. Third, by modeling
at different time scales and group scales, the model generates results from
monthly, annual, and group perspectives.
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such as charging coordination, may have more direct impacts on
the peak generation (19, 23).
For long-term EV operation, we look at the annual energy

consumption of urban EVs. To better understand its changes
from a holistic and development perspective, more variables are
included: operating regions, group scales, fleet types, and the
improvement of EV performance at high and low temperatures
(53, 54). The analyses in this part are primarily conducted for
EVs in Beijing, Shanghai, and Guangzhou. For the performance
improvement, we define a development level of 0% to represent
the current level and a level of 100% to indicate a situation where
the ambient temperature has no impact on the ECRs of EVs.
Accordingly, we first analyze how this performance improvement
can affect the annual energy consumption of EVs. Since the
annual energy consumption is linearly related to the average
monthly driving distance, public LDEVs with an average
monthly driving distance of ∼4,500 km are used as an example
(Fig. 6 A, Inset). Fig. 6A displays that the average annual energy
consumption of current public LDEVs in Beijing, Shanghai,
and Guangzhou is ∼9,374.2 kWh, 8,937.1 kWh, and 8,767.1
kWh per vehicle, respectively. In this case, if the energy con-
sumption increases induced by high and low temperatures are
reduced by 80% (corresponding to the development level of

80%), the annual energy consumption of public LDEVs in these
three regions can be curtailed by 587.4 kWh, 237.7 kWh, and
101.7 kWh per vehicle, respectively. The figures for nine regions
and more scenarios are compared in SI Appendix, Fig. S16 A–D.
By combining these results, we also infer that EVs with higher
travel demand or frequently operating at high and low tempera-
tures may benefit more from the improvement.
We evaluate the impact of the varied fleet types and group

scales on the annual energy consumption of LDEV groups. As
shown in Fig. 6B, for every additional 1,000 LDEVs in Beijing,
Shanghai, or Guangzhou, the marginal increases in groups’ annual
energy consumption peak between 8.6 and 9.8 GWh when all
vehicles are intended for public use. The increases induced by the
growth of private LDEVs in the three metropolitan areas are only
19.6, 50.3, and 43.7% of those of public LDEVs. Interestingly, the
annual energy consumption of private LDEVs in Beijing is lower
than that in Shanghai and Guangzhou, though the ambient tem-
perature in Beijing is more unfavorable to EV operation (Fig. 6B
and SI Appendix, Fig. S4 B and I). A reasonable explanation is that
the average monthly driving distances of private LDEVs in Beijing
are usually smaller than those in the other two regions (Fig. 6 A,
Inset). This explanation further suggests that, unlike the monthly
energy consumption, the annual energy consumption of urban EVs

C

A B

D

Fig. 4. Regional and monthly changes in EV energy consumption. (A) Annual average and highest ratios of ECRs in nine regions. The bar marked in red
indicates that the highest value occurs in summer. (B) The average ECRs of the power and auxiliary systems of the LDEVs in Beijing and Guangzhou. (C) The
increments and month-over-month (MoM) growth rates of the LDEV ECR in Beijing. The ECR increments are defined as the relative increases between
monthly average ECRs and the lowest ECRs. The red and blue bars represent an ECR increase and decrease, respectively. (D) The maximum monthly energy
consumption changes Eg between 2 consecutive months of the urban EV groups with increasing group scale under a fixed monthly driving distance Dm.
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is determined more by their average monthly driving distances than
their operating regions.

Conclusions
As the scale of transport electrification continues to increase
worldwide, research has focused on battery resources and the
power supply of urban EVs. Our assessment incorporates unique
and previously unavailable datasets of actual urban-scale EV
operation to provide a better understanding of the battery utili-
zation and energy consumption of large-scale EV utilization.
Given the illustrated variation induced by operating regions,
group scales, fleet types, and time scales, existing macroscopic and
aggregate-level evaluations in this field should be avoided in de-
cision making as the simplifications can yield misleading results.
We assess two types of observed battery utilization changes in

large-scale EV operation, namely, behavior- and technology-
related battery utilization changes. Surprisingly, both cases dis-
play fairly low battery utilization rates in an urban scope. For
instance, in Beijing, only an average of 13% of battery energy is
employed daily in 600 km private LDEVs, and up to 35% of battery
energy cannot be utilized temporarily or permanently because of
insufficient battery technology. In this context, blindly increasing
the battery energy of urban EVs will decrease the efficiency of
battery resources. Moreover, the results of a regional comparison
reveal that restrictions on battery utilization are greater in regions
where extremely high or low ambient temperatures usually occur.
Relatively delaying the large-scale development of EVs in these
regions would be positive for the sustainability of battery materials
and the economy.
In terms of energy consumption, the presented results exhibit

the nonnegligible impact of the growing scale of urban EV uti-
lization on the urban power supply. For example, electricity
generation in Beijing would increase by 10% with an increase of
∼0.4 million public LDEVs or 2 million private LDEVs. On the

other hand, even with a constant monthly driving demand, there
are significant changes in the energy consumption of urban-scale
EVs during seasonal shifts (for instance, up to 21% in Beijing
and 13% in New York City). These changes are undesirable for
the power grid and would be exacerbated when EVs become the
majority of urban transportation. Furthermore, the described
comparison indicates that the average monthly driving distance
would be the most decisive factor for the long-term energy con-
sumption of urban EVs.
Our work represents an important step toward the resource

and energy assessment of large-scale urban EV applications. The
provided methods and data can be widely utilized as the basis of
high-precision modeling for future research on resources, energy
management, power grids, and emissions. In addition, the pre-
sented evaluation models are built based on statistical methods and
therefore applicable to nearly all types of battery-based transport.

Materials and Methods
Data. The real-world data of EVs in China utilized in this paper are obtained
from the National Monitoring and Management Center for New Energy

A

B

C

D

Fig. 5. Number of charging and driving vehicles in an LDEV group for dif-
ferent seasons in Beijing. A, B, C, and D represent the results of spring,
summer, autumn, and winter, respectively. The maximum value is stan-
dardized as 1,000 EVs for comparison; the temporal resolution is 1 min. The
factor (Rdc) represents the average ratio between the number of charging
EVs and the number of driving EVs.

A

B

Fig. 6. Assessing annual energy consumption of EVs. (A) Annual energy
consumption per public LDEV, Ed, in three regions with varying improve-
ment levels of EV high- and low-temperature EV performance. (Inset) The
distributions of the monthly driving distances of the public/private fleet
types in Beijing, Shanghai, and Guangzhou. (B) Annual energy consumption
of the LDEV groups, Ea, in three regions with increasing group scale. The
added parts of public LDEVs represent the situation where the share of
public LDEVs in the group is increased from 0 to 100%.
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Vehicles and the National Big Data Alliance of New Energy Vehicles (NDA-
NEV) Open Lab. The data center contains real-time EV data of more than 3
million EVs, and the data sources used for modeling primarily comprise two
categories: dynamic and static datasets. The dynamic datasets primarily in-
clude EV operating data, such as the timestamp, vehicle velocity, total
driving distance, and location data (latitude and longitude). For dynamic
data, the temporal resolution is between 1 and 30 s, and the spatial reso-
lution is between 1 and 10 m. The static datasets encompass EV operational
data and vehicle feature data, such as fleet types, regions to which the
license plates belong, etc. The classification of the types of the data is il-
lustrated in SI Appendix, Fig. S17. The operating data of EVs are transmitted
according to protocol GB/T 32960 and stored in the data center by using big
data technologies. Subsequently, EV data are preprocessed (classified, fil-
tered, etc.) to provide inputs for further statistical analyses. The EV data used
can be freely downloaded (see Data Availability). The real-world EV data out-
side China are collected from open datasets (55, 56) and research (19, 53, 54,
57). The vehicle specification datasets are acquired from the open databases of
EV manufacturers and the Ministry of Industry and Information Technology of
China. The urban electricity generation data are obtained from the National
Bureau of Statistics of China (58). The climate data of regions worldwide used
in this paper are collected from open datasets of Weather Underground
(https://www.wunderground.com/) and Reliable Prognosis (https://rp5.ru/).

Driving Distance Distributions. To incorporate real-world driving demand into
the analysis, we extract the distributions of daily and monthly driving dis-
tances by using real-world records of EV operation. Since there could be
more than one driving session in a day, multiple driving sessions of a vehicle
are integrated to compute the daily driving distance. In this work, the daily
driving distance is obtained by calculating the difference between the last
and first odometer values of the day. Then, daily driving distance records are
labeled with dates, regions, fleet types, and anonymous vehicle identifica-
tions to acquire daily driving distance sets in designated regions and of tar-
geted fleet types. Monthly driving distances are calculated by aggregating
daily driving distances. For both the daily and monthly driving distances, the
cumulative distribution function Fr,t for a specific region r and fleet type t is

Fr,t(x) = ∑x
u=«

f r,tΔ (u), [1]

where f r,tΔ (u) is the share of vehicles in the driving distance interval (u,u + Δ],
and « is the threshold of the daily or monthly driving distance.

Battery Utilization Models. We define EV battery utilization rates as the
percentage of battery energy utilized for driving. By employing the strong linear
relationship between consumed battery energy and driving distances in statistics
(SI Appendix, Fig. S18), we transform the calculation of battery energy usage into
that of the driving range usage. In terms of the behavior-related battery utili-

zation rate Rr,t
b of region r and fleet type t, the equation is given as follows:

Rr,t
b (ϕ) = dr,t

u (ϕ)/do, [2]

where ϕ is the proportion of urban vehicles to be covered, dr,t
u (ϕ) is the

driving range that can cover the daily driving demand of the specified share
ϕ of urban vehicles in fleet type t and region r, and do is the official range of
the target EVs. Note that dr,t

u can be derived from a simple transformation of
the driving distance distribution.

For technology-related battery utilization changes, we aim to measure
the maximum proportion of battery energy that is available or unavailable for
driving. However, in real-world operation, it is practically impossible to deplete
all battery energy of EVs, and EVs are usually charged or discharged irregu-
larly. In this context, we normalize the operating conditions by considering a
trade-off between being able to cover as many use scenarios as possible and
ensuring that the number of eligible records is sufficient to be statistically
significant. In SI Appendix, Fig. S19, it can be seen that the SOC interval [35, 95]
covers ∼87% of total SOC usage and that further expansion of this interval has
relatively small marginal gains (only an increase of 6% in coverage when
changing from [35, 95] to [10, 95]). In this work, a fixed SOC interval, from 95
to 35%, is chosen for normalization. Based on this approach, the upper limit of
the battery utilization rate for each trip, Rr,m,v

trip , is calculated as follows:

Rr,m,v
trip = dr,m,v

trip /dv
int, [3]

where r,m, and v are the parameters of the region, month, and vehicle type,
respectively, dr,m,v

trip is the tailored driving distance of a trip that meets the SOC

interval condition, and dv
int is the equivalent official driving range in the des-

ignated SOC interval. By aggregating the battery utilization rates of individual
trips in different dimensions, we calculate the average upper limits Rr,m,v

t of the
battery utilization rates of EVs in region r, monthm, and vehicle type v. That is,

Rr,m,v
t = ∑Rr,m,v

trip /N, [4]

where N is the total number of trips. In addition, a general model for urban
average upper limits of battery utilization rates is provided by using the
available driving range ratios and regional ambient temperatures (SI Ap-
pendix, Figs. S20A and S21A). The reduction of available ranges from 25
to −5 °C in this model is ∼26%, which is in line with the results in refs. 53 and
59. To analyze the contribution of battery improvement to battery material
efficiency, we estimate the changes in the maximum unavailable battery
energy Qm and the equivalent battery cost Ceq.. That is,

[ Qm

Ceq.
] = Qo × fe(θ,Rr

tl)[ 1μ ], [5]

where Qo is the official battery energy, θ is the development level vector for
different battery technology directions, Rr

tl is the vector of the lowest upper limits
of the battery utilization rates in region r, μ is the coefficient of the equivalent
cost given in SI Appendix, Table S2, and fe is the function of the percentage of
the maximum unavailable battery energy, as detailed in SI Appendix.

Energy Consumption Models. Tomeasure the electricity consumed by EVs from
the power grid per kilometer, we define the ECR (δtrip) of each trip as follows:

δtrip = Ec/Dtrip, [6]

where Dtrip is the driving distance of the trip and Ec is the charged energy in the
adjacent charging process (the SOC intervals of the driving and charging pro-
cesses are controlled to be the same). By linking different datasets, all computed
ECR results are labeled with the corresponding operating attributes (such as the
location and starting time), climatic conditions (such as the ambient tempera-
ture), operational status (such as the fleet type), and vehicle features (such as
the vehicle type and battery type). Therefore, the average ECRs of EVs in varied
circumstances are acquired by applying conditional aggregation on the labeled
ECR datasets. In addition, a general model for the average ECR changes of ur-
ban EVs is provided in SI Appendix, Figs. S20B and S21B. To analyze the average
energy consumption of power and auxiliary systems from a monthly perspec-
tive, we acquire the subsystem ECR matrix using the following formulation:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
δr,1aux δr,1pow

..

. ..
.

δr,12aux δr,12pow

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
δr,1avg 0

..

.
⋱ ..

.

0 δr,12avg

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ςaux(κr,1) ςpow(κr,1)

..

. ..
.

ςaux(κr,12) ςpow(κr,12)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, [7]

where δr,maux and δr,mpow are the ECRs of the auxiliary and power systems, re-
spectively, in region r and monthm; δr,mavg is the average ECR of the target EVs;

ςaux and ςpow are functions of the energy consumption shares of the auxiliary
and power systems, respectively, and are derived from actual subsystem
data; and κr,m is the ambient temperature. The changes in the number of
active EVs are generated by counting the vehicle numbers (in driving or
charging states) at different time intervals. In this case, the temporal reso-
lution is controlled to be 1 min, and the maximum number of EVs is stan-
dardized as 1,000 for comparison. To reflect the intensity of charging
activities, the average ratio (Rdc) between the numbers of charging and
driving EVs in an EV group is calculated. The methods in ref. 60 are used in the
calculation for charging load profiles. We estimate the annual energy con-
sumption of EVs considering different operating regions, fleet types, and the
improvement levels of the high/low-temperature EV performance. First, to
compare the results in varied regions, the monthly driving distances of EVs are
controlled to be the same. The average annual energy consumption Er

d of EVs
in region r with improvement level θt can be written as follows:

Er
d(dm, θt) = ∑

m

fc(θt, δr,mavg) × dm, [8]

where dm is the monthly driving distance and fc is a function to convert the
current ECR to the future ECR when the EV technology is improved as de-
tailed in SI Appendix. We then calculate the energy consumption of the EV
groups of public and private LDEVs with increasing group scale. The monthly
energy consumption of an LDEV group is determined by the share of the
different fleet types, ECRs, and driving distance distributions. The monthly
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and annual energy consumption, Er,m
m and Er

a, respectively, of an LDEV group
in region r can be written as follows:

Er,m
m (n) = n × ∫ β

αu × δr,mavg × ∑
i∈V

[pi × f ri (u)]du [9]

and

Er
a = ∑

m

Er,m
m , [10]

where n is the scale of the group, α and β are the specified lower and upper
limits of monthly driving distances, respectively, V is the set of all fleet types,
pi is the proportion of fleet type i in the group, and f ri is the probability

density function of the monthly driving distance distribution of fleet type i
in region r.

Data Availability. The data and code used in this paper have been deposited in
the GitHub repository (https://github.com/zhybit/Urban_EV_Assessment). All
study data are included in the article and/or SI Appendix.
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